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Di�ractive, exclusive di-jet events produced by 500 GeV/c �� scattered o� nuclei were used to measure
their A-dependence, and to make the �rst direct measurement of the valence-quark momentum dis-
tribution in pions. Data on the latter are compared to two limiting predictions for the pion light-cone
wave-function. The results show that the asymptotic wave-function of perturbative QCD describes the
data well for Q2 of 10 GeV2 and above. The measured A-dependence is consistent with observation
of point-like con�gurations in the pion and color-transparency calculations.

1 Introduction

Color transparency (CT) is the name given

to the prediction that the color �elds of QCD

cancel for physically-small singlet systems of

quarks and gluons.1 This color neutrality (or

color screening) should lead to the suppres-

sion of initial and �nal state interactions of

the small-sized systems in hard processes.2

Observing color transparency requires that

point-like con�gurations (PLC's) are formed

and that the energies are high enough so that

expansion of the PLC does not occur while

traversing the target3;4;5 (the \frozen" ap-

proximation). We use the A-dependence of

di-jet production to test for the existence of

PLC's in coherent interactions with nuclei.

Given that we �nd such exclusive di-jet,

PLC interactions, we can use these to mea-

sure the valence quark distribution in pions.

Here, we summarize two papers being sub-

mitted to Phys. Rev. Lett.6.

2 Data Set and Event Selection

From a 10% subset of the Fermilab E7917

2�1010 recorded interactions, a selection was
made to �nd those which had exclusively two-

jets recoiling coherently from the carbon and

platinum targets. On-line, only a single inci-

dent pion was allowed in the resolving time of

the calorimeters and a loose minimum trans-

verse energy requirement was made. O�-

line, further selection was made by demand-

ing that at least 90% of the incident pion mo-

mentum appear in charged particles with a

total charge equal to �1. Using the JADE

algorithm8 optimized for di-jet �nding, only

events with two jets in the �nal state were

accepted. The jets had to be back-to-back in

the plane transverse to the beam within 20

degrees.

For each two-jet event, we calculated the

transverse momentum of each jet with re-

spect to the beam axis (kt), the di-jet trans-

verse momentum above the minimum for that

di-jet mass (qt), and the di-jet invariant mass

(Mdi�j). The di-jet invariant mass is related

by simple kinematics to the quarks' longitu-

dinal momentum fractions (x) in the pion in-

�nite momentum frame: M2

di�j = k2t =[x(1 �
x)]. To assure clean selection of high-mass

di-jet events, a minimum kt of 1.2 GeV/c

is required. The distribution of events vs x

gives the square of the valence-quark wave-

function, assuming that each of the two jets

is a measure of the quark from which it came.

The size of a jq�qi system which produces

di-jets with kt > 1.5 GeV/c can be esti-

mated as 1=Q � 0:1 fm where Q2 �M2

di�j �
4k2t � 10 GeV2=c2. The distance that the

jq�qi system travels before it expands appre-

ciably, the coherence length, is given by `c �



Table 1. Experimental results and color-transpar-
ency (CT) predictions10 for � values in coherent pion
dissociation o� nuclei vs kt.

kt � �� � (CT)

GeV/c

1.25 � 1.5 1.64 +0.06 �0.12 1.25

1.5 � 2.0 1.52 �0.12 1.45

2.0 � 2.5 1.55 �0.16 1.60

(2plab)=(M
2

di�j �m2
�)

3 which is � 10 fm for

Mdi�j � 5 GeV/c2. Therefore, we expect

that the di-jet signal events selected in this

analysis evolve from point-like con�gurations

which will exhibit color transparency.9;10

3 Coherent Scattering and Color

Transparency

We derive the numbers of produced di-jet

events in the data for each target in three

kt bins by integrating over the coherent dif-

fractive terms in �ts of the MC-smeared dis-

tributions to the q2t distributions of the di-jet

events. Using the resulting yields and the

known target thicknesses, we determine the

ratio of cross sections for di�ractive dissoci-

ation on platinum and carbon. The expo-

nents � are then calculated using the cross

section dependence � / A�. The � values

are listed in Table 1, as are CT theoretical

predictions10. The �'s are consistent with

those predictions and above kt = 1:5 GeV/c,

clearly inconsistent with � values like those in

� / A2=3 for incoherent scattering observed

in other hadronic interactions.

4 Pion Light-Cone Wave-Function

The pion wave-function can be expanded in

terms of Fock states:

	 = �jq�qi+ �jq�qgi+ 
jq�qggi+ � � � : (1)

For interactions in which pions transfer mo-

mentum to other particles over su�ciently

Table 2. Asymptotic (aas) and CZ (aCZ) wave-

function contributions in �ts of the data.

kt aas �aas aCZ �aCZ

GeV/c

1.25 - 1.5 0.64 +0.14 -0.12 0.36 -�aas

1.5 - 2.5 1.00 +0.10 -0.14 0.00 -�aas

short distances (for su�ciently high Q2), the

�rst component should be dominant.11

The pion light-cone wave-function is

predicted9;12;13 by perturbative QCD for as-

ymptoticly large Q2 to be

�asy(x) =
p
3x(1� x): (2)

Using QCD sum rules, at low Q2 Chernyak

and Zhitnitsky (CZ) proposed14

�CZ(x) = 5
p
3(1� x)(1� 2x)2; (3)

where x is the usual fractional momentum

carried by the quark. In the measurements,

we use x = pjet1=(pjet1 + pjet2).

For measurement of the pion wave-

function, we used data from the platinum tar-

get only, since it has a sharp di�ractive distri-

bution and low background. We used events

with q2t < 0:015 GeV/c2. In order to get

a measure of the correspondence between the

experimental results and the calculated light-

cone wave-functions, we �t the results with a

linear combination of squares of the two MC-

smeared wave-functions. This assumes an in-

coherent combination of the two wave func-

tions and that the evolution of the CZ func-

tion is slow (as stated in Ref. 14). The coef-

�cients aas and aCZ representing the contri-

butions of the asymptotic and CZ functions,

respectively, are listed in Table 2. The results

for the higher kt window show clearly that the

asymptotic wave-function describes the data

very well. Thus, for kt > 1:5 GeV/c, which

translates to Q2 � 10 (GeV/c)2, the pertur-

bative QCD approach that led to construc-



tion of the asymptotic wave-function is rea-

sonable. The distribution in the lower win-

dow is consistent with a signi�cant contribu-

tion from the CZ wave-function.

The kt dependence of di�ractive di-jets is

an observable that can show how well the per-

turbative calculations describe the data. As

shown in Ref. 10, assuming interaction via

two gluon exchange and slowly-varying �as
leads to d�

dkt
� (kt)

n, with n = - 6. For our

data, the region above kt � 1.8 GeV/c can

be �t with n = �6:5 � 2:0 with �2=dof =

0.8, consistent with perturbative QCD pre-

dictions. This supports the evaluation of the

light-cone wave-function at large kt.

5 Summary

We have observed pion scattering events

which exhibit A� dependence consistent with

color transparency for coherent di�ractive di-

jet production o� nuclei. These events ex-

hibit kt dependence transitioning from non-

perturbative to the perturbative regime. In

addition, using the events from the platinum

target, we have made the �rst direct mea-

surement of valence quark distribution in the

pion. This wave-function is consistent with

dominance of asymptotic form for kt above

� 1:5 GeV=c (Q2 � 10 GeV 2).
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